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Abstract
It is shown that the self-dual Yang–Mills (SDYM) equations for the ∗-bracket
Lie algebra on a heavenly space can be reduced to one equation (the master
equation). Two hierarchies of conservation laws for this equation are
constructed. Then the twistor transform and a solution to the Riemann–Hilbert
problem are given.

PACS numbers: 02.30.Ik, 12.10.−g, 12.15.−y

Introduction

It turns out that many nonlinear integrable systems are reductions of SDYM equations (see,
e.g., Mason and Woodhouse (1996)). The statement that all integrable systems of mathematical
physics are some reductions of SDYM equations is known as Ward’s conjecture (Ward 1985).
The twistor construction for SDYM system is in a sense inherited by the reduced system.
There are, however, exceptional cases which do not fit into this scheme for a finite-dimensional
structure group (Mason and Woodhouse 1996).

An extension of the Lie algebra of SDYM equations to infinite-dimensional algebra
of Hamiltonian vector fields provides a description of heavenly spaces of complex general
relativity (Mason and Newman 1989). The nonlinear graviton construction (Penrose 1976,
Penrose and Ward 1980, Mason and Woodhouse 1996) proves that the heavenly equations
constitute an integrable system. Thus the idea arose that H-space might be a universal
integrable system (Mason 1990). However, the reduction of the algebra of Hamiltonian vector
fields over a symplectic manifold �2, sdiff(�2) to finite-dimensional algebras such as su(N)

does not exist for N > 2.
Consequently, it seems that Ward’s conjecture should be extended to the algebras that

include all finite-dimensional Lie algebras sl(N,C) as well as the algebra of Hamiltonian
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vector fields. This is the point where deformation quantization enters into the theory of
integrable systems.

The idea of deformation quantization, introduced by Bayen et al (1978) is to consider
a deformed algebra of smooth functions on a classical phase space. The introduced
associative ∗-product of two functions f, g is a formal power series in deformation parameter
h̄, f ∗ g = ∑

h̄k�k(f, g), k � 0. The ∗-product is assumed to satisfy the following
axioms:

• It is local, i.e. �k(f, g) depends only on f, g and partial derivatives of f, g are of rank
not greater than k.

• It is a deformation of Poisson algebra, i.e. �1(f, g) − �1(g, f ) = i{f, g}Poisson.

One can prove that such a product exists on any symplectic (De Wilde and Lecomte 1983,
Fedosov 1994) or even Poisson manifold (Kontsevich 1997).

It seems useful to consider integrable (quantum) deformations of integrable systems
(Kupershmidt 1990, Strachan 1992, 1997, Takasaki 1994). It is so, because the Moyal
bracket algebra can be reduced to all su(N) algebras (Fairlie et al 1990). In a natural way
the Poisson algebra is embedded in deformed algebra. This suggests that SDYM equations
for ∗-bracket Lie algebra (∗-SDYM equations) are reducible to su(N)-SDYM equations as
well as to heavenly equations. This is the problem which we intend to consider in the present
and the following papers. The present paper is devoted mainly to the formal problem of
integrability of ∗-SDYM equations. In order to make our results more general we deal with
an arbitrary ∗-product, and the Yang–Mills fields are defined on four-dimensional heavenly
space.

It turns out that to have the formalism sufficiently general, one needs to deal with formal
power series containing all negative powers of the deformation parameter h̄, in particular
with the power series of the form exp

[
1
ih̄A

]
. As is well known (Fedosov 1996) such power

series are well defined only for some special A. To ensure the existence of the exponent for
a wide class of A we introduce a new formal parameter t (the convergence parameter). It is
obvious that in applications only those series will be used that are convergent with respect to
the parameter t.

Our paper is organized as follows. In section 1 we give some fundamental definitions
and properties of formal power series. Then we obtain a group eQ of formal power
series suitable for the construction of respective gauge theory. The ∗-SDYM equations
on Kähler manifold in the case of heavenly space are reduced to one equation called
the master equation (ME) (1.16). In section 2 we find two collections of conserved
charges (2.4) and (2.7). As is pointed out, the collection (2.7) is characteristic for
any SDYM system and (2.4) is a generalization of hidden symmetries of heavenly or
SDYM equations. We obtain two Lax pairs and the forward Penrose–Ward transform for
ME. A dressing operator connecting those two pairs, and finally, the algebra of hidden
symmetries are given. Section 3 is devoted to the solution of Riemann–Hilbert problem.
We define the homogeneous Hilbert problem and show the existence of the solution of this
problem for the formal power series group eQ (Birkhoff’s factorization theorem). Then the
inverse Penrose–Ward transform is considered. Concluding remarks (section 4) close the
paper.

Some applications of master equation (ME) in the theory of integrable systems and
complex relativity will be presented in a forthcoming paper. In that paper, a sequence of
su(N) chiral fields tending to the heavenly space for N → ∞ has been constructed. It has
also been shown that any analytic solution of su(N)-SDYM equations can be obtained from
some solution of ∗-SDYM equations.
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1. Formal power series and ∗-SDYM equations

At the beginning of this section, we briefly summarize the basic definitions and theorems
concerning formal power series. We define algebra, group and adjoint action. For more
details, see MacLane (1939), Neumann (1949), Jacobson (1980) and Ruiz (1993).

The ordered Abelian group is a pair ((G, +), P ), where (G, +) is an Abelian group, P is
a subset of G such that

• 0 /∈ P,P ∩ −P = ∅ (0 is the neutral element of (G, +));
• ∀g, h ∈ P, g + h ∈ P ;
• G = −P ∪ {0} ∪ P .

We call P the subset of positive elements. It allows one to order elements of the group, i.e., if
g, h ∈ G we say that g is less than h and denote g < h if and only if h − g ∈ P .

Let ((G, +), P ) be an ordered group and K a vector space. Formal power series over G
with coefficients in K is a map a : G → K, such that its support supp a = {g ∈ G : a(g) 	= 0}
has the least element.

The formal power series a will be written in the following form:

a =
∑
g∈G

agh̄
g where ag = a(g), h̄-parameter.

The set of all formal power series over G with coefficients in K will be denoted by K((h̄G)).
It is a vector space over complex field, with addition and multiplication by scalar are defined
pointwise by

a + b =
∑
g∈G

(ag + bg)h̄
g, ∀α ∈ C αa =

∑
g∈G

αagh̄
g.

Moreover, if the pair (K, ◦) is an algebra then the multiplication of series is defined as

ab =
∑
g∈G

(∑
h∈G

ah ◦ bg−h

)
h̄g.

This multiplication is well defined, as the support of each series has the least element, so
∀g ∈ G the number of elements ah ◦ bg−h, h ∈ G is finite.

In the case when (G, +) is a group (Z, +) we will write K((h̄)). Moreover, K[[h̄]] :=
{a ∈ K((h̄)), ag = 0∀g ∈ −P }.

According to Fedosov’s works (Fedosov 1994, 1996) the pair (O(�2n)[[h̄]], ∗) constitutes
an algebra. O(�2n)[[h̄]] denotes linear space of formal power series with coefficients
being holomorphic functions over symplectic manifold (�2n, ω). ∗ is an associative
and noncommutative multiplication ∗ : O(�2n)[[h̄]] × O(�2n)[[h̄]] → O(�2n)[[h̄]]. The
∗-product considered is a closed ∗-product, i.e., the trace Tr(f ∗ g) := ∫

ωn

n! f ∗ g has the
property Tr(f ∗ g) = Tr(g ∗ f ) (Connes et al 1992, Omori et al 1992, Fedosov 1996).

We can define the Lie algebra (O(�2n)[[h̄]], {, }) based on the ∗-product

∀a, b ∈ O(�2n)[[h̄]] {a, b} = 1

ih̄
(a ∗ b − b ∗ a).

Our aim is to construct gauge theory. The fundamental object is the gauge group. The
group element appears as an exponent of the element of Lie algebra. In the finite-dimensional
case the exponent of left-invariant vector fields is the maximal integral curve, a 1-parameter
subgroup of the Lie group.

In the case of the ∗-algebra taking an exponent is possible only for some special vectors
(cf Fedosov (1996), Asakawa and Kishimoto (2000)). Such a group will not be general enough
to define the gauge transformation.
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In order to make superpositions of formal power series well defined, we need to introduce
another parameter. So we would consider formal power series over (Z, +) with coefficients in
a space O(�2n)((h̄)). In a space O(�2n)((h̄, t)) of all such series we consider a subspace A

A =
{

A ∈ O(�2n)((h̄, t)), A =
∞∑

m=0

∞∑
k=−m

tmh̄kAm,k(x)

}
.

The star product ∗ defined on O(�2n)[[h̄]] can be extended to A (we use the same symbol)

∀A,B ∈ A, A =
∞∑

m1=0

∞∑
k1=−m1

tm1h̄k1Am1,k1(x), B =
∞∑

m2=0

∞∑
k2=−m2

tm2h̄k2Bm2,k2(x)

A ∗ B =
∞∑

m1,m2=0

tm1+m2h̄−(m1+m2)

∞∑
k1=−m1,k2=−m2

(
h̄k1+m1Am1,k1(x) ∗ h̄k2+m2Bm2,k2(x)

)
.

The algebra (A, ∗) is called a formal ∗-algebra.
Let A ∈ A. The element A(0), i.e. the one which stands at t0, will be denoted as φ(A)

and called the free element

∀A ∈ A A = φ(A) +
∞∑

m=1

∞∑
k=−m

tmh̄kAm,k, where φ(A) =
∞∑

k=0

h̄kA0,k.

The familyN of formal power series belonging to a formal ∗-algebraA, N = {Aδ ∈ A, δ ∈ �}
is called t-locally finite if for each natural m the number of formal power series of this family
having non-zero element at tm is finite.

Then for each t-locally finite family and any family of complex number {aδ ∈ C, δ ∈ �}
the sum

∑
δ∈� aδAδ is well defined:

• Let A ∈ A and let free element φ(A) = 0. Then the family {An, n = 1, 2, . . .}, where
An ≡ A ∗ An−1 = An−1 ∗ A is t-locally finite.

• Let f (z) = ∑∞
n=0 anz

n be a complex power series of one variable and A ∈ A with
φ(A) = 0. We define f (A) = ∑∞

n=0 anA
n (where An is as above).

• If f1(z) = ∑∞
n=0 anz

n and f2(z) = ∑∞
m=0 bmzm are two formal power series and A ∈ A

with φ(A) = 0, then

(f1 · f2)(A) = (f2 · f1)(A) = f1(A) ∗ f2(A).

This follows from the fact that A is an algebra with An ∗ Am = Am ∗ An = An+m, and the
multiplication of coefficients an, bm is commutative.

• For each A ∈ A such that φ(A) = 1 there exists inversion of A, i.e. X ∈ A, A ∗ X =
X ∗ A = 1. Indeed, let f1(z) := (z + 1)−1 = ∑∞

n=0(−1)nzn. Let f2(z) := z + 1, then
(f1 · f2)(z) = 1. If one defines X = f1(A − 1),

1 = (f1 · f2)(A − 1) = f1(A − 1) ∗ f2(A − 1) = f1(A − 1) ∗ A

1 = (f2 · f1)(A − 1) = f2(A − 1) ∗ f1(A − 1) = A ∗ f1(A − 1).

In what follows we will write A−1 := X.
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Remarks

• φ(A−1) = 1.
• The set {A ∈ A, φ(A) = 1} with ∗-product form a group, it is a subgroup of invertible

elements.

Let f1(z) = ∑∞
n=0 anz

n, f2(z) = ∑∞
m=1 bmzm and A ∈ A with φ(A) = 0.

• Then superposition of series f (A) = f1(f2(A)) is well defined.

This follows from the fact that the family {[f2(A)]n, n = 0, 1, 2, . . .} is t-locally finite.

Corollary 1.1. For each A ∈ A with φ(A) = 0, eA := ∑∞
n=0

An

n! is an element of the group
with the free element equal to 1. On the other hand each element of this group is an exponent.
The inversion map is given by A = ∑∞

n=1
(−1)n+1

n
(eA − 1)n.

In what follows Q is subalgebra of formal power series with the free element equal to zero,

Q :=
{

A ∈ A, A =
∞∑

m=1

∞∑
k=−m

tmh̄kAm,k(x)

}
.

eQ is a group of formal power series with the free element equal to 1,

eQ :=
{

a ∈ A, a = 1 +
∞∑

m=1

∞∑
k=−m

tmh̄kam,k(x)

}
.

From corollary 1.1 the algebra Q with Lie bracket ∀A,B ∈ Q {A,B} := 1
ih̄ (A ∗ B − B ∗ A)

will be called the Lie algebra of the group eQ.
It is worth noting here that we do not consider differential structure on the group eQ, so

this is not a Lie group. Apart from that, for A,B ∈ Q one has

1

ih̄

d

dε

∣∣∣∣
ε=0

(e−√
εA ∗ e−√

εB ∗ e
√

εA ∗ e
√

εB) = {A,B}.

This justifies our notation.
From corollary 1.1 ∀a ∈ eQ there exists Ã ∈ Q, such that a = exp(Ã). For traditional

reasons, we will write

a = e
1
ih̄ A where Ã = 1

ih̄

∞∑
m=1

∞∑
k=−m+1

tmh̄kAm,k(X) =:
1

ih̄
A. (1.1)

For our purpose, it is important to consider the following left actions of eQ on the
algebra A,

ψ : eQ × A → A, ψ(a, f ) := a ∗ f (1.2)
φ : eQ × A → A, φ(a, f ) := f ∗ a−1 (1.3)

and the adjoint representation

Ad : eQ × A → A, Ad(a, f ) := a ∗ f ∗ a−1. (1.4)

According to (1.1) the adjoint representation can be written in the following form:

a ∗ f ∗ a−1 = f +
∞∑
l=1

1

l!
{A, . . . , {A︸ ︷︷ ︸

l-times

, f } · · ·}. (1.5)

Each of the actions does not change the free element; see Asakawa and Kishimoto (2000).
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1.1. Bundle of formal ∗-algebras

Let us consider four-dimensional complexified Kähler manifold M.3 We will consider
functions and tensors on M which takes values in formal ∗-algebra A.

Let P(M, eQ) denote a trivial principle bundle πP : P → M. In a total space P the
structure group acts to the right in each fibre P × eQ  (u, c) �→ u ∗ c ∈ P . The global
sections are then

σ = 1 +
∞∑

m=1

∞∑
k=−m

tmh̄kσm,k(x, zi) where σm,k(x, zi) ∈ O(�2n × M).

Each representation of the group eQ in algebra A defined by (1.2), (1.3) and (1.4) allows one to
define an associated bundle with typical fibre A. In the Cartesian product P ×A we introduce
the following equivalence relations:

(u, v) ∼ψ (u′, v′) ⇔ [πP(u) = πP(u′), ∃c ∈ eQ, u′ = u ∗ c, v′ = c−1 ∗ v],
(u, v) ∼φ (u′, v′) ⇔ [πP(u) = πP(u′), ∃c ∈ eQ, u′ = u ∗ c, v′ = v ∗ c],
(u, v) ∼Ad (u′, v′) ⇔ [πP(u) = πP(u′), ∃c ∈ eQ, u′ = u ∗ c, v′ = c−1 ∗ v ∗ c].

Definition 1.2

• The formal ∗-algebra bundle E(M,A) overM is a set of equivalence classes of Cartesian
product P × A in relation ∼ψ , i.e. the total space is E := P × A/∼ψ .

Analogously,

• the bundle E′ := P × A/∼φ;

• the adjoint bundle adj(E) := P × A/∼Ad.

The map πP induces the maps πE : E → M, πE′ : E′ → M, πadj(E) : adj(E) → M. These
maps send the equivalence class [(u, v)] to πP(u) ∈ M which makes that E,E′, adj(E) are
bundles.

3 The coordinates on M are denoted by (w, z, w̃, z̃). We also use the following abbreviations: zα = {w, z},
zα̃ = {w̃, z̃} and zi = {w, z, w̃, z̃}. M is Hermitian manifold, i.e., is equipped with holomorphic nondegenerate
metric ds2 = 2gαβ̃ dzα ⊗s dzβ̃ . This reduces the allowed transformations to those which preserve the foliation

w = const, z = const as well as w̃ = const, z̃ = const. Each 1-form σ ∈ 1M can be decomposed to a sum
σ = σ(1,0) + σ(0,1) where σ(1,0) = σw dw + σz dz, and σ(0,1) = σw̃ dw̃ + σz̃ dz̃. Analogously, the exterior derivative d
is a sum of two Dolbeaut operators d = ∂ + ∂̃ where

∂ = dw ∧ ∂w + dz ∧ ∂z, ∂̃ = dw̃ ∧ ∂w̃ + dz̃ ∧ ∂z̃.

The Kähler form is a 2-form of the type (1, 1), given by � = gαβ̃ dzα ∧ dz̃β . For complexified Kähler

manifold the Kähler form is closed d� = 0. Locally, this means that � = ∂∂̃K for some complex function
K = K(w, z, w̃, z̃) called Kähler potential. The Kähler form � = gαβ̃ dzα ∧ dzβ̃ gives rise to the volume element

ν := 1
2 � ∧ � = g dw ∧ dw̃ ∧ dz ∧ dz̃ where g = det(gαβ̃ ) = K,ww̃ K,zz̃ −K,wz̃ K,zw̃ . Under the Hodge duality the

following 2-forms constitute the basis of anti-self-dual forms

�1̇1̇ := dx̃ ∧ dỹ, �1̇2̇ := �, �2̇2̇ := dx ∧ dy

(see Plebański (1975), Flaherty (1976), Ko et al (1981), Mason and Woodhouse (1996) for more details.)
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For each section σ : M → P of the principal bundle, the section f : M → E of
the associated bundle induces map f̃ σ : P → P × A such that the following diagram is
commutative,

M �f
E

�
σ

P �f̃ σ P × A

�

�

where � is the canonical map �(u, v) = [(u, v)].
The map f̃ σ defines another map fσ : M → A by fσ := prA ◦ f̃ σ ◦ σ . It is called the

representation of the section f : M → E with respect to the section σ : M → P .
Higher external powers of the bundle E, Ek := E ⊗ kM k = 1, 2, 3, 4 form an algebra

of the forms with values in E

E ⊗ M :=
4⊕

k=1

E ⊗ kM,

with external product (in terms of representations)

ω ∧ ν := ωi1...ik ∗ νj1...jl
dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl .

This allows us to define the bracket of forms

{ω, ν} := 1

ih̄
(ω ∧ ν − (−1)klν ∧ ω)

= {ωi1...ik , νj1...jl
} dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl .

Definition 1.3

• A connection in E is a linear map D : Sec(E) → Sec(E1), defined by

∀f ∈ Sec(E) Dfσ := dfσ +
1

ih̄
Aσ ∗ fσ (1.6)

where Aσ is a local 1-form with values in Q, the Lie algebra of the group eQ, and
fσ : M → A is a representation of the section f .

• Any connection D in the bundle E induces connections in bundles E′ and adj(E),
respectively (we will use the same symbol D as in each case the connection is defined by
the same 1-form Aσ )

∀f ∈ Sec(E′) Dfσ := dfσ + fσ ∗ 1

ih̄
Aσ

∀f ∈ Sec(adj(E)) Dfσ := dfσ + {Aσ , fσ }.

If fσ , fρ are two representations of the same section f : M → E then there exists
c : M → eQ, such that fρ = c−1 ∗ fσ . Thus for Dfρ = dfρ + 1

ih̄Aρ ∗ fρ one gets

Dfρ = c−1 ∗
[

dfσ +
1

ih̄
Aσ ∗ fσ

]
where Aσ = c ∗ Aρ ∗ c−1 + ih̄c ∗ dc−1. (1.7)
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The transformation law (1.7) can be rewritten for c−1 = e
1
ih̄ B

Aρ = Aσ +
∞∑

n=1

1

n!
{B, . . . , {B︸ ︷︷ ︸

n times

, Aσ } · · ·} − dB −
∞∑

n=1

1

(n + 1)!
{B, · · · {B,︸ ︷︷ ︸

n times

dB} · · ·}.

In what follows we will omit the superscripts σ, ρ denoting sections of the principal bundle.
For different representations we will use more common symbols ′, ′′, etc.

The connection in E may be extended, in a natural way, to Ek . We denote the exterior
covariant differentiation by the same symbol D : Sec(Ek) → Sec(Ek+1) defined for any
ω ∈ Sec(Ek) by Dω = dω + 1

ih̄A ∧ ω.

The curvature of D is a map D ◦ D ≡ D2 : Sec(E) → Sec(E2). The form F := DA is
a curvature form (where operator D := d + 1

ih̄A∧)

F := dA +
1

ih̄
A ∧ A = dA +

1

2
{A,A}.

For each ω ∈ Sec(Ek) we have D2ω = F ∧ ω.

1.2. Self-dual Yang–Mills equations

The following 2-forms constitute the basis of anti-self-dual forms

�1̇1̇ := dw̃ ∧ dz̃, �1̇2̇ := �, �2̇2̇ := dw ∧ dz

where � = gαβ̃ dzα ∧ dzβ̃ is the Kähler form. Then the curvature form F is self-dual iff

F ∧ �1̇1̇ = 0, F ∧ �1̇2̇ = 0, F ∧ �2̇2̇ = 0.

The self-dual Yang–Mills (SDYM) equations read

∂wAz − ∂zAw + {Aw,Az} = 0, (1.8)

∂w̃Az̃ − ∂z̃Aw̃ + {Aw̃,Az̃} = 0, (1.9)

gβ̃α(∂αAβ̃ − ∂β̃Aα + {Aα,Aβ̃}) = 0. (1.10)

The first two of the above equations can be interpreted as integrability conditions for
substitutions Aα = ih̄a−1 ∗ ∂αa, Aα̃ = ih̄b−1 ∗ ∂α̃b where a, b : M → eQ. Then the
third equation takes the form

ih̄a−1 ∗ gβ̃α∂α[a ∗ b−1 ∗ ∂β̃(b ∗ a−1)] ∗ a = 0.

After the substitution J := b ∗ a−1 this becomes Yang’s equation (Yang 1977, Parkes 1992)

gβ̃α∂α(J−1 ∗ ∂β̃J ) = 0, (1.11)

or equivalently ∂∂̃K ∧ ∂(J−1 ∗ ∂̃J ) = 0 where ∂ = dzα ∧ ∂α , ∂̃ = dzα̃ ∧ ∂α̃ are Dolbeault
operators and K is the Kähler potential, i.e. � = ∂∂̃K. This equation arises from a minimum
action principle for S = 1

2κ
∫

ωnKF ∧ F where F is a curvature form of the connection
A = ih̄J−1 ∗ ∂̃J , and ω is symplectic form on �2n (Donaldson 1985, Nair and Schiff 1990,
Mason and Woodhouse 1996).

In our consideration, we will work in the so-called K-formalism of Newman (Newman
1978, Leznov 1988, Parkes 1992, Plebański and Przanowski 1996, Mason and Woodhouse
1996).

Choosing gauge such that A = ih̄J−1 ∗ ∂̃J , the SDYM equations reduce to Yang’s
equation (1.11). It can be rewritten in the form

gβ̃α∇αAβ̃ = 0 ⇔ ∂β(ggα̃βAα̃) = 0 (1.12)
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where ∇α is the covariant derivative with respect to the Levi-Civita connection4 on M.
Equation (1.12) is equivalent to the existence of � such that

∂β� = εβγ ggα̃γ Aα̃ ⇒ Aα̃ = 1

g
εβγ gγ α̃∂β� = −εα̃β̃gβ̃γ ∂γ � (1.13)

where εαβ is a tensor density in (w, z) variables, defined in each coordinate neighbourhood
by (εαβ) := ( 0

−1
1
0

) =: (εαβ). Analogously εα̃β̃ is a tensor density in (w̃, z̃) variables

(εα̃β̃ ) := ( 0
−1

1
0

) =: (εα̃β̃ ). The definition (1.13) of � implies that under the change of

variables w̃′ = w̃′(w̃, z̃), z̃′ = z̃′(w̃, z̃) � transforms according to �′ = ∂(w̃,z̃)

∂(w̃′,z̃′)�, i.e., �

is a scalar density in these variables. In this case covariant derivative ∇α̃ acts on densities
according to the rule ∇α̃� = ∂α̃� − (ln g),α̃ � while ∇α� = ∂α�.

Inserting Aα̃ given by (1.13) into (1.9) one gets

gα̃β∇α̃∇β� +
1

2g
εαβ{∇α�,∇β�} = 0 (1.14)

For the first time this equation was proposed by Park (1992) for Poisson algebra. In the case of
Moyal algebra and flat base manifold it was considered by Plebański and Przanowski (1996),
Przanowski and Formański (1999).

The linearized equation (1.14) reads

gα̃β∇α̃∇βη +
1

g
εαβ{∇α�,∇βη} = 0. (1.15)

Let us consider a special case of the base manifold M, i.e. the heavenly space. For a
Kählerian manifold to be heavenly space it is necessary and sufficient that the Ricci tensor
Rαβ̃ vanish (cf footnote 4), i.e. (ln g),αβ̃ = 0. Thus the determinant g = G(w, z)G̃(w̃, z̃), and
rewriting (1.13) once again

Aα̃ = 1

G
εβγ gγ α̃∂β

(
�

G̃

)
= −G̃εα̃β̃gβ̃γ ∂γ

(
�

G̃

)
.

We can define � := �

G̃
which is now a scalar function. With the help of this function the

master equation (1.14) now reads

gβ̃α∂β̃∂α� +
1

2G
εαβ{∂α�, ∂β�} = 0. (1.16)

4 On a Kählerian manifold the Hermitian connection is at the same time the Levi-Civita connection

�α
βγ = gασ̃ ∂γ gβσ̃ , �α̃

β̃γ̃
= gα̃σ ∂γ̃ gσ β̃ .

This implies that the only non-zero coefficients of the curvature tensor (apart from those obtained from symmetry
operations) are

Rα̃βγ δ̃ = −gσα̃∂δ̃�
σ
βγ = −gβσ̃ ∂γ �σ̃

α̃δ̃
.

The Ricci tensor Rαβ̃ = gσ̃γ Rγ β̃ασ̃ = gσ̃γ Rαβ̃γ σ̃ = (lng),αβ̃ and Ricci scalar R = gβ̃αRαβ̃ .
The Weyl tensor of conformal curvature

Cα̃βγ δ̃ = Rα̃βγ δ̃ + 1
2 (gβδ̃Rγ α̃ + gγ α̃Rβδ̃) − 1

6 Rgβδ̃gγ α̃ .

The manifold (M, ds2) is called weak heaven (Plebański 1975) or right conformally flat (Ko et al 1981) if the
2-forms Cαβ̃ := 1

2 Cαβ̃γ δ̃ dzγ ∧ dzδ̃ are self-dual. For these to be true the following conditions should be satisfied:

Cαβ̃ ∧ �ȦḂ = 0, Ȧ, Ḃ = 1̇, 2̇. But the only non-trivial condition is Cαβ̃ ∧ �1̇2̇ = 1
12 Rgαβ̃ν so R must vanish. The

space (M, ds2) is heavenly if the curvature 2-forms are self-dual. As 1
2 Rαβ̃γ δ̃ dzγ ∧ dzδ̃ ∧ �1̇2̇ = 1

2 Rαβ̃ν the Ricci
tensor must vanish.
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It will be called the master equation (ME). This equation arises from a minimum action
principle for the action

S = 1

2

∫
ωn

[
G̃ε̃ ∧ 1

3
� ∗ {∂�, ∂�} + � ∧ ∂� ∧ ∂̃�

]
(1.17)

where ε̃ := 1
2εα̃β̃ dxα̃ ∧dxβ̃ and � = gαβ̃ dzα ∧dzβ̃ is the Kähler form. (Note that our notation

is covariant and we do not work in any special coordinates like, for example, Plebański’s
coordinates (Plebański 1975) in which g = 1 (Parkes 1992).) The action (1.17) generalizes
actions given by Boyer and Plebański (1985), Leznov (1988), Parkes (1992), Plebański and
Przanowski (1996).

2. Conservation laws and twistor construction

In this section, we construct two hierarchies of conservation laws for ME on heavenly
background (1.16). It is known from the previous section that in the algebra A there exist both
the ∗-product and the bracket {·, ·}. Hence one can expect the existence of two different linear
systems for ME.

2.1. Hierarchy of hidden symmetries of ME

Let W denote the space of solutions to the master equation (ME) (1.16), and TW the space of
solutions to the linearized master equation (LME)

gβ̃α∂β̃∂αφ +
1

G
εαβ{∂α�, ∂βφ} = 0. (2.1)

Define two operators acting on functions on M with values in A

Lα := gβ̃α∂β̃ +
εβα

G
{∂β�, ·}, α = 1, 2. (2.2)

Then their commutator can be easily found to be

[Lw,Lz](·) = 1

G

{
gβ̃α∂β̃∂α� +

1

2G
εαβ{∂α�, ∂β�}, ·

}
.

So the operators Lα commute iff � satisfies ME (1.16). Equation (2.1) written in terms of
these operators reads

Lα∂αφ = 0.

Suppose that φ(0) ∈ TW . Then define the current J(1) with components J α
(1) := Lαφ(0),

J α̃
(1) = 0. Thus ∇iJ

i
(1) = ∇αJ α

(1) = ∇αLαφ(0) = Lα∂αφ(0). As φ(0) solves the LME the current
J(1) fulfils the conservation law ∇αJ α

(1) = 0. This conservation law can be written in the form
∂α

(
GJα

(1)

) = 0, which implies the existence of the scalar function φ(1), such that

GJα
(1) = −εαβ∂βφ(1) ⇒ ∂αφ(1) = GεαβJ

β

(1). (2.3)

This function gives rise to the next current J α
(2) := Lαφ(1), divergence of which also vanishes,

i.e.

∇αJ α
(2) = ∇αLαφ(1) = Lα∂αφ(1) = εαβLαGLβφ(0)

=
{
gβ̃α∂β̃∂α� +

1

2G
εαβ{∂α�, ∂β�}, φ(0)

}
by ME= 0.

Note that the above equality also states that φ(1) ∈ TW . One can repeat above construction
starting from φ(1). We are led to an iterative procedure. Given the nth conserved charge φ(n)
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one constructs the (n+1) current J α
(n+1) := Lαφ(n) and then one solves ∂αφ(n+1) = GεαβJ

β

(n+1)

for φ(n+1), i.e., φ(n+1) is a solution of

∂αφ(n+1) = GεαβLβφ(n). (2.4)

Such a solution is an element of TW and it defines a divergence-free current.

Remarks

• In this way, we define an integro-differential recursion operator φ(n+1) = Rφ(n) depending
additionally on boundary conditions imposed. This operator is invertible.

• The elements of TW are hidden symmetries of ME. These symmetries generalize the
symmetries for heavenly equations obtained by Boyer and Plebański (1985), Strachan
(1993), Husain (1994), Dunajski and Mason (2000).

2.2. Second collection of conserved charges

The existence of the ∗-product in each fibre of the bundle E allows us to construct another set
of operators

Dα := gβ̃α∂β̃ +
1

ih̄

εβα

G
∂β�∗

where � is a solution of ME (1.16). For any function with value in A we have ∇αDα −
Dα∂α = 0. Let η(0) be a solution to

Dα∂αη(0) = 0. (2.5)

Then define vector jα
(1) := Dαη(0), j α̃ := 0. The divergence of j i

(1) vanishes,

∇ij
i
(1) = ∇αjα

(1) = ∇αDαη(0) = Dα∂αη(0) = 0.

In the same way as in the previous case, the conserved current j i
(1) defines a function η(1) by a

system of equations

∂αη(1) = Gεαβj
β

(1). (2.6)

This function fulfils

Dα∂αη(1) = DαGεαβj
β

(1) = εαβDαGDβη(0)

= 1

ih̄

(
gβ̃α∂β̃∂α� +

εαβ

2G
{∂α�, ∂β�}

)
∗ η(0)

by ME= 0.

The function η(1) fulfils the same equation as η(0). This allows us to define another current
j i
(2), with components jα

(2) = Dαη(1), j α̃
(2) = 0. The divergence of j(2) vanishes.

Continuing this procedure we arrive at the series of conserved charges η(0), η(1), . . . and
currents jα

(1), j
α
(2), . . . defined by the recursion equations

∂αη(n+1) = Gεαβj
β

(n+1) = GεαβDβη(n), n = 0, 1, . . . . (2.7)

Remarks

• As in the case of hidden symmetries the system (2.7) defines the recursion operator
η(n+1) = R̃η(n). The above hierarchy of conservation laws is characteristic for self-dual
Yang–Mills equations (cf Brezin et al (1979), Prasad et al (1979), Chau (1983)).

• Both hierarchies were presented in Przanowski et al (2001a, 2001b) in the case of the
complexified Minkowski space M and the Moyal ∗-product.

The characteristic feature of integrable systems besides the existence of infinite number
of conservation laws is the existence of a Lax pair and some geometric construction related to
the system considered. We are going to deal with this problem.
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2.3. Twistors for M

Twistor surface or β-plane or null string (Penrose 1976, Plebański and Hacyan 1975, Flaherty
1976, Ward and Wells 1990, Mason and Woodhouse 1996) is a two-dimensional submanifold
S ⊂ M such that

• S is totally null, i.e. ∀p ∈ S and ∀v ∈ TpS ds2(v, v) = 0;
• the 2-form orthogonal to S is anti-self-dual.

This implies that it is also totally geodesic, i.e. ∀p ∈ S and ∀v ∈ TpS geodesic with tangent
vector v in p lies on the surface S.

For heavenly space (M, ds2) we have ∂α∂β̃ ln g = 0, i.e. g = G(w, z)G̃(w̃, z̃). In
appropriate coordinates g = 1 and this is the first heavenly equation (Plebański 1975). We
work in an arbitrary coordinate system, which means that the determinant g is a product of
two functions.

For each λ ∈ CP 1 − {∞} the integral 2-surface of two vector fields

�w = ∂

∂w
− λGgσ̃z ∂

∂zσ̃
, �z = ∂

∂z
+ λGgσ̃w ∂

∂zσ̃
(2.8)

is a twistor surface. This follows from the Frobenius theorem as those fields commute, and
from the fact that ds2(�w, �w) = ds2(�w, �z) = ds2(�z, �z) = 0. The anti-self-dual form
�(λ) := G̃ dw̃ ∧ dz̃−λ�+λ2G dw ∧dz is orthogonal to the distribution Wλ = span{�w, �z}.
Moreover, it is closed d�(λ) = 0 and degenerate �(λ) ∧ �(λ) = 0. From Darboux theorems
this allows one to introduce smooth functions P w, P z such that �(λ) takes the canonical form
�(λ) = dP w ∧ dP z.

Analogously in the domain CP 1 − {0}  ζ , the twistor surface is defined by

�w = 1

ζ

∂

∂w
− Ggσ̃z ∂

∂zσ̃
�z = 1

ζ

∂

∂z
+ Ggσ̃w ∂

∂zσ̃
(2.9)

and �(ζ) = 1
ζ 2 G̃ dx̃ ∧ dỹ − 1

ζ
� + G dx ∧ dy. The canonical form of �(ζ) reads

�(ζ) = dP w ∧ dP z.
On the patching CP 1 − {0,∞} for λ = ζ the distributions considered are equivalent.

Then we see that for each point p ∈ M and for each λ ∈ CP 1 there exists a twistor surface
through p (Penrose 1976). The set PT of all twistor surfaces is a three-dimensional complex
manifold called the projective twistor space. It is covered by two coordinate neighbourhoods,
(V , (P w, P z, λ)) for λ ∈ CP 1 − {∞} and (V , (P w, P z, ζ )) for ζ ∈ CP 1 − {0}.

A more general result also holds, i.e., the projective twistor space exists iff (M, ds2) is a
weak heaven (Penrose and Ward 1980).

Both manifolds M and PT are embedded in the so-called correspondence space,
F := M × CP 1

q

M × CP 1

�
�

�
���

M PT

p

�
�

�
���



∗-SDYM fields and heavenly spaces 4411

2.4. The Lax pair and Penrose–Ward transform

In this section, we construct the formal bundle over twistor space PT which is determined by
a solution � of master equation (ME). First we start with a Lax pair for ME. For each value
of a spectral parameter belonging to CP 1, consider a pair of operators

Mw = ∂w − λGgσ̃z∂σ̃ − λ

ih̄
∂w�∗ = �w − λ

ih̄
∂w�∗

Mz = ∂z + λGgσ̃w∂σ̃ − λ

ih̄
∂z�∗ = �z − λ

ih̄
∂z�∗, for λ ∈ CP 1 − {∞},

and, respectively,

Mw = 1

ζ
∂w − Ggσ̃z∂σ̃ − 1

ih̄
∂w�∗ = �w − 1

ih̄
∂w�∗

Mz = 1

ζ
∂z + Ggσ̃w∂σ̃ − 1

ih̄
∂z�∗ = �z − 1

ih̄
∂z�∗, for ζ ∈ CP 1 − {0}.

Then one has

εαβMαMβ = λ2

ih̄
G

[
gβ̃α∂β̃∂α� +

1

ih̄G
εαβ∂α� ∗ ∂β�

]
.

Thus for each λ ∈ CP 1 − {∞} this commutator vanishes iff � satisfies ME. Analogously for
ζ ∈ CP 1 − {0} [Mw,Mz] = 0 iff � satisfies the master equation.

If � is any solution of ME then Frobenius integrability conditions are satisfied and one
can find a solution of the linear system

Mw�(λ) = 0, Mz�(λ) = 0 (2.10)

where �(λ) ≡ �(t, h̄;w, z, w̃, z̃, λ) ∈ A. In particular, this solution is analytic in λ in some
neighbourhood of 0 ∈ CP 1. We will construct such a solution from conserved charges.

Let η(k) k = 0, 1, 2, . . . denote conserved charges defined by recursion relations (2.7).
For λ ∈ CP 1 − {∞} we define

�(λ) :=
∞∑

k=0

λkη(k)(t, h̄;w, z, w̃, z̃). (2.11)

The conserved charges can be chosen such that the radius of convergence is greater than zero.
As all η(k) satisfy (2.7) thus above �(λ) satisfies (2.10).

By a fundamental solution of the system (2.10) we mean a solution with value in the
group eQ. Taking appropriate solution η(0) of (2.5) we get �(λ) with free element equal to 1.
In particular, if we take η(0) = 1 then the recursion relation gives η(1) = 1

ih̄�.
Two fundamental solutions �1(λ) and �2(λ) differ only by a twistor function, i.e.,

�1(λ) = �2(λ) ∗ H where H : F → eQ is constant along each twistor surface �αH = 0,

α = w, z.
For ζ ∈ CP 1 − {0}, using another sequence of conserved charges {η′

(k)}∞k=0, one can
construct a fundamental solution of the system

Mw�(ζ ) = 0, Mz�(ζ ) = 0, �(ζ ) = η′
(0) +

∞∑
k=1

(
1

ζ

)k

η′
(k). (2.12)

This time {η′
(k)}∞k=0 is a sequence for which η′

(k) = R̃η′
(k+1), k � 1. The operator R̃ is defined

by (2.7). Moreover η′
(0) fulfils additionally Dαη′

(0) = 0 which are the same as those for J−1 in
Yang’s equation (1.11) (cf Mason and Woodhouse (1996)).
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On the overlap of domains, for λ = ζ ∈ CP 1 − {0,∞}, �(λ) = �(λ) ∗ H where H
is a twistor function defined uniquely by �(λ) and �(λ). As it takes values in the group eQ

and twistor space may be covered only by those two neighbourhoods the knowledge of this
function is sufficient to recover a bundle over PT with H as a transition function. In this way,
each solution of (ME) corresponds to one bundle over the space PT .

2.5. Dressing operator

The hidden symmetries, i.e., elements of the space TW of solutions to equation (2.1) define a
second Lax pair

�(λ) :=
∞∑

n=0

λnφ(n), λ ∈ CP 1 − {∞}. (2.13)

As all φ(n), n = 0, 1, . . . satisfy LME (2.1) �(λ) satisfies the system

∂α�(λ) − λGεαβLβ�(λ) = 0, λ ∈ CP 1 − {∞}, (2.14)

which is a Lax pair for ME.
Correspondingly, in the neighbourhood of infinity ζ ∈ CP 1 − {0}

�(ζ) =
∞∑

n=0

(
1

ζ

)n

φ(n), ζ ∈ CP 1 − {0} (2.15)

then the spectral system is of the form

1

ζ
∂α�(ζ ) − GεαβLβ�(ζ ) = 0. (2.16)

Let F(λ) := F(t, h̄;w, z, w̃, z̃, λ) be such that

�(λ) = �(λ) ∗ F(λ) ∗ �−1(λ). (2.17)

Such F(λ) exists and is uniquely defined by �(λ) and �(λ). Moreover, as �(λ) and �(λ)

fulfil (2.10) and (2.14) respectively, F(λ) has to be constant along each twistor surface, i.e., it
depends only on (P w, P z, λ).

The definition (2.17) describing F(λ) constitutes �(λ) as a dressing operator for a linear
system (2.14).

2.6. Algebra of hidden symmetries

Consider a superposition of solutions to the linearized master equation (2.1), written in terms
of the above-defined dressing operator

δ(FF)� = 1

2π i

∮
γ

dλ

λ2
(−�(λ) ∗ F(λ) ∗ �−1(λ) + �(λ) ∗ F(λ) ∗ �−1(λ)) (2.18)

where

F(λ) = F(t, h̄; P̃ w, P̃ z, λ), F (λ) = F(t, h̄;P w, P z, λ), (2.18)

(cf Park (1990, 1992), Takasaki (1990)). The contour γ in (2.18) is the boundary of a domain
containing λ = 0 and it does not cross any singularity of integrated functions.

To find an algebra of hidden symmetries consider a commutator[
δ(F1F1), δ(F2F2)

]
� = δ(F1F1)

(
� + δ(F2F2)�

) − δ(F1F1)� − δ(F2F2)

(
� + δ(F1F1)�

)
+ δ(F2F2)�.

(2.19)
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The following theorem holds (cf Takasaki (1990), Park (1992), Dunajski and Mason (2000)).
The hidden symmetries of ME constitute the algebra[

δ(F1F1), δ(F2F2)

]
� = δ({F1,F2}{F1,F2})�. (2.20)

The proof can be found in Przanowski et al (2001b), Formański (2004).

3. Integrability of ME

3.1. The homogenous Hilbert problem for formal power series

The Hilbert problem for formal power series can be defined in the similar form as in the case
of vector functions. The latter case can be found in the monographs (Muscheliszwili 1962,
Pogorzelski 1966). We will show the existence theorem in the first case.

Let L be a smooth contour. Let S+ denote the interior of L and let 0 ∈ S+. By S− we
denote the exterior of L, i.e. S− := CP 1 − S+ − L.

Let the formal power series

�(t, h̄; λ) =
∞∑

m=0

∞∑
k=−m

tmh̄k�m,k(λ)

be such that all the functions �m,k(λ) are sectionally holomorphic which means that each
�m,k(λ) is holomorphic on S+ and S−. The formal power series is said to have a finite degree
at infinity if for each function �m,k(λ) there exist cm,k ∈ Z such that lim|λ|→∞

|�m,k(λ)|
|λ|cm,k = 0.

In case cm,k > 0 in the neighbourhood of infinity we can write

�m,k(λ) = γm,k(λ) + O

(
1

λ

)
where γm,k(λ) is a polynomial.

For cm,k < 0 we have γm,k(λ) = 0 and for cm,k = 0 the γ are constant. The formal
power series γ (t, h̄; λ) = ∑∞

m=0

∑∞
k=−m tmh̄kγm,k(λ) will be called the principal part at

infinity of the series �(t, h̄; λ). It is said that the series �(t, h̄; τ) τ ∈ L satisfies on L
the Hölder condition H(α), 0 < α � 1 if there exist constants Am,k such that ∀τ1, τ2 ∈ L

|�m,k(τ2) − �m,k(τ1)| � Am,k|τ2) − τ1|α .
The homogeneous Hilbert problem can be formulated as follows. Suppose that we are

given an element G(t, h̄; ξ) of the group eQ, defined on L and satisfying the Hölder condition
on L. Find a sectionally holomorphic formal power series �(t, h̄; λ) having finite degree at
infinity, continuous on L and satisfying the boundary condition

�+(t, h̄; ξ) = �−(t, h̄; ξ) ∗ G(t, h̄; ξ) ξ ∈ L (3.1)

�+(t, h̄; ξ) and �−(t, h̄; ξ) denote the limit values, i.e.

�+(t, h̄; ξ) = lim
λ→ξ

�(t, h̄; λ) for λ ∈ S+

�−(t, h̄; ξ) = lim
λ→ξ

�(t, h̄; λ) for λ ∈ S−.

We will seek a solution of this problem in the class of formal power series satisfying Hölder
condition on L.

In the case of finite groups this problem is solved by the Birkhoff factorization theorem
(Birkhoff 1913, Mason and Woodhouse 1996).

Since �+(t, h̄; ξ) is the limit value of �(t, h̄; λ) holomorphic in S+, from the Cauchy
theorem we find

0 = 1

2π i

∫
L

�+(t, h̄; τ)

τ − λ
dτ λ ∈ S−.
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By the Plemelj formula (Plemelj 1908), in the limit λ → ξ ∈ L one gets

−1

2
�+(t, h̄; ξ) +

1

2π i

∫
L

�+(t, h̄; τ)

τ − ξ
dτ = 0 (3.2)

where the integral above is taken in the sense of principal value. The equation (3.2) is an
integral equation for �+(t, h̄; ξ).

Analogously, the Cauchy theorem guarantees that �−(t, h̄; ξ) satisfies the integral
equation

1

2
�−(t, h̄; ξ) +

1

2π i

∫
L

�−(t, h̄; τ)

τ − ξ
dτ = γ (t, h̄; ξ) (3.3)

where γ (t, h̄; λ) is a principal value at infinity of the series �(t, h̄; λ).
Equations (3.2) and (3.3) and the condition �+(t, h̄; ξ) = �−(t, h̄; ξ) ∗ G(t, h̄; ξ) imply

the Fredholm integral equation with a non-singular kernel

�−(t, h̄; ξ) − 1

2π i

∫
L

�−(t, h̄; τ) ∗ G(t, h̄; τ) ∗ G−1(t, h̄; ξ) − 1

τ − ξ
dτ = γ (t, h̄; ξ). (3.4)

Summarizing, the existence of a solution of the homogeneous Hilbert problem (3.1) implies
that the limiting value �−(t, h̄; ξ) satisfies (3.4). The converse may not be true, as the solution
of (3.4) has to satisfy additionally (3.2) and (3.3).

To answer under what condition the solution of (3.4) defines a sectionally holomorphic
solution to the homogeneous Hilbert problem, consider

�(t, h̄; λ) =


1

2π i

∫
L

�−(t, h̄; τ)

τ − λ
dτ − γ (t, h̄; λ) for λ ∈ S+

1

2π i

∫
L

�−(t, h̄; τ) ∗ G(t, h̄; τ)

τ − λ
dτ for λ ∈ S−.

Thus �(t, h̄; λ) is sectionally holomorphic and vanishes at infinity. The Plemelj theorem gives

�+(t, h̄; ξ) = 1

2
�−(t, h̄; ξ) +

1

2π i

∫
L

�−(t, h̄; τ)

τ − ξ
dτ − γ (t, h̄; ξ)

�−(t, h̄; ξ) = −1

2
�−(t, h̄; ξ) ∗ G(t, h̄; ξ) +

1

2π i

∫
L

�+(t, h̄; τ) ∗ G(t, h̄; τ)

τ − ξ
dτ.

As is seen from (3.1), equation (3.2) is equivalent to vanishing of �−(t, h̄; ξ) on L. Equation
(3.3) gives �+(t, h̄; ξ) = 0 on L. Those two conditions and the fact that �(t, h̄; λ) is
holomorphic on S+ and S− lead to �(t, h̄; λ) ≡ 0. The integral equation (3.4) is a condition

�+(t, h̄; ξ) = �−(t, h̄; ξ) ∗ G−1(t, h̄; ξ) ξ ∈ L. (3.5)

The problem of finding �(t, h̄; λ) sectionally holomorphic, vanishing at infinity, satisfying
boundary condition (3.5) on L is called the accompanying problem of the problem (3.1).
Analogously, this problem implies the integral equation for a limit value �+(t, h̄; ξ)

�+(t, h̄; ξ) +
1

2π i

∫
L

�+(t, h̄; τ) ∗ G(t, h̄; τ) ∗ G−1(t, h̄; ξ) − 1

τ − ξ
dτ = 0. (3.6)

As is seen from the above, the solution of integral equation (3.4) defines the solution of original
homogenous Hilbert problem (3.1) iff the only solution of the accompanying problem is the
trivial one �(t, h̄; ξ) ≡ 0.

Thus, in order to prove the existence of the solution of the problem (3.1) we need to prove
that equation (3.6) has only the trivial solution and that there exists a solution of the (3.4).
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To simplify the notation, we will denote

�(t, h̄; λ) =
∞∑

m=0

tm�m(h̄; λ) where �m(h̄; λ) =
∞∑

k=−m

h̄k�m,k(λ).

First observe that the free element of G(t, h̄; τ) ∗ G−1(t, h̄; ξ) − 1 vanishes, so we can write

G(t, h̄; τ) ∗ G−1(t, h̄; ξ) − 1 =
∞∑

n=1

tnFn(h̄; τ, ξ).

Inserting into (3.6) one gets
∞∑

m=0

tm�+
m(h̄; ξ) = − 1

2π i

∫
L

∞∑
s=0

t s�+
s (h̄; τ) ∗

∑∞
n=1 tnFn(h̄; τ, ξ)

τ − ξ
dτ.

This equation can be solved iteratively

�+
0 (h̄; ξ) = 0

�+
m(h̄; ξ) = − 1

2π i

∫
L

∑m−1
j=0 �+

j (h̄; ξ) ∗ Fm−j (h̄; τ, ξ)

τ − ξ
dτ, m � 1.

Thus the only solution of (3.6) is �+(t, h̄; ξ) = 0. Consequently, each solution of (3.4) defines
a solution of Hilbert problem

�(t, h̄; λ) =


1

2π i

∫
L

�−(t, h̄; τ) ∗ G(t, h̄; τ)

τ − λ
dτ dla λ ∈ S+

− 1

2πi

∫
L

�−(t, h̄; τ)

τ − λ
dτ + γ (t, h̄; λ) dla λ ∈ S−.

Equation (3.4) takes the form
∞∑

m=0

tm�−
m(h̄; ξ) = − 1

2π i

∫
L

∞∑
s=0

t s�−
s (h̄; τ) ∗

∑∞
n=1 tnFn(h̄; τ, ξ)

τ − ξ
dτ +

∞∑
m=0

tmγm(h̄; ξ)

and it can be solved iteratively

�−
m(h̄; ξ) = γm(h̄; ξ) +

1

2π i

∫
L

∑m−1
j=0 �−

j (h̄; ξ) ∗ Fm−j (h̄; τ, ξ)

τ − ξ
dτ m = 0, 1, 2, . . . .

Note that the solution of (3.4), takes the value in a group eQ iff γ (t, h̄; λ) ∈ eQ.
Some remarks on Riemann–Hilbert problem for ∗-algebra can also be found in Takasaki

(1994), Strachan (1997).

3.2. Inverse Penrose–Ward transform

In this section, we will show the correspondence between holomorphic formal bundles over
twistor space PT and solutions of master equation (1.16).

As it was shown the manifold PT is covered by two coordinate neighbourhoods
(V , (P w, P z, λ)), λ ∈ CP 1 − {∞} and (V , (P w, P z, ζ ), ζ ∈ CP 1 − {0}.

Each holomorphic formal bundle over PT is characterized by a transition function
H(t, h̄;P w, P z, λ) : V ∩ V → eQ, i.e.,

H(t, h̄; P̃ w, P̃ z, λ) = 1 +
∞∑

m=1

∞∑
k=−m

tmh̄kHm,k(P
w, P z, λ)
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with Hm,k(P
w, P z, λ) being holomorphic. The pull-back of the series by the map p :

M × CP 1 → PT gives on the correspondence space F = M × CP 1 the series H = p∗H
constant along each twistor surface

�wH = 0, �zH = 0. (3.7)

Briefly we will write H(t, h̄; λ) ≡ H(t, h̄;w, z, w̃, z̃, λ).
As H is a transition function, H(t, h̄; λ) can be factorized as

�(t, h̄; λ) = �(t, h̄; λ) ∗ H(t, h̄; λ) for λ ∈ CP 1 − {0,∞} (3.8)

where �(t, h̄; λ) is holomorphic everywhere apart from λ = ∞ and �(t, h̄; λ) is holomorphic
everywhere apart from λ = 0 and both series take values in eQ.

The problem of such factorization, known as the Riemann–Hilbert problem, reduces to
the previously discussed homogenous Hilbert problem.

Indeed, let L be a smooth contour on CP 1 (for example an equator). One can find
�(t, h̄; λ) holomorphic on S+ (we use the same notation as in the previous sections), �(t, h̄; λ)

holomorphic on S− and continuous on S+ ∪ L and S− ∪ L, respectively. On L they satisfy the
condition

�̃+(t, h̄; ξ) = �−(t, h̄; ξ) ∗ H(t, h̄; ξ) ξ ∈ L.

The series � and � can be analytically continued onto S− − {∞} and S+ − {0}, respectively,
by

for λ ∈ S− − {∞} �(t, h̄; λ) := �(t, h̄; λ) ∗ H(t, h̄; λ)

for λ ∈ S+ − {0} �(t, h̄; λ) := �(t, h̄; λ) ∗ H−1(t, h̄; λ).
(3.9)

In this way, we obtain �(t, h̄; λ) defined in each finite point of the complex plane and
sectionally holomorphic on S+, S−, satisfying on L the condition �+(t, h̄; ξ) = �−(t, h̄; ξ).
This means that such a �(t, h̄; λ) is holomorphic on the whole complex plane, as desired.
Analogously �(t, h̄; λ) is holomorphic on C −{0}. From the definition (3.9) the factorization
(3.8) holds.

Suppose that we are given �(t, h̄; λ) and �(t, h̄; λ) defined by (3.8). Thus from (3.7)
one gets

�α[�−1(t, h̄; λ) ∗ �(t, h̄; λ)] = 0, α = w, z.

and

�α�(t, h̄; λ) ∗ �−1(t, h̄; λ) = �α�(t, h̄; λ) ∗ �−1(t, h̄; λ).

The LHS is holomorphic everywhere apart from λ = ∞, while RHS is holomorphic
everywhere apart from λ = 0 and at infinity it may have only a first-order pole. Thus
from the Liouville theorem they both are linear with respect to λ, i.e.,

�α�(t, h̄; λ) = 1

ih̄
(−Aα + λεαβGgσ̃βAσ̃ ) ∗ �(t, h̄; λ)

�α�(t, h̄; λ) = 1

ih̄
(−Aα + λεαβGgσ̃βAσ̃ ) ∗ �(t, h̄; λ)

where Aα = Aα(t, h̄), α = w, z, Aσ̃ = Aσ̃ (t, h̄), σ̃ =, w̃, z̃ do not depend on λ.
The Aα,Aσ̃ satisfy the SDYM equations (1.8), (1.9) and (1.10). This is easily seen from

the fact that the vector fields �w, �z commute for each value of λ. Thus

0 = εβα�β�α�(λ) = εβα(∂β − λGεβδg
σ̃δ∂σ̃ )

[(−1

ih̄
Aα +

1

ih̄
λGεασgρ̃σAρ̃

)
∗ �

]
= 1

ih̄

[
−εβα∂βAα +

1

ih̄
εβαAα ∗ Aβ

]
+

λ

ih̄
Ggσ̃α

[
∂σ̃Aα − ∂αAσ̃ +

1

ih̄
(Aσ̃ ∗ Aα − Aα ∗ Aσ̃ )

]
+

λ2

ih̄

G

G̃
ερ̃σ̃

[
∂ρ̃Aσ̃ +

1

ih̄
Aρ̃ ∗ Aσ̃

]
.
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Appropriate terms at λ0, λ1, λ2 give SDYM: (1.8), (1.10) and (1.9), respectively.
Let us note that the factorization (3.8) does not define the series �(t, h̄; λ), �(t, h̄; λ)

uniquely. They can be simultaneously multiplied by a(t, h̄) ∈ eQ, independent of λ. This
implies the gauge freedom for SDYM potential.

Thus we can choose such �(t, h̄; λ), �(t, h̄; λ) that Aα = 0. Then (compare with (2.10))

�α�(t, h̄; λ) ∗ �−1(t, h̄; λ) = 1

ih̄
∂α� (3.10)

where � is a solution of the master equation (1.16).

4. Conclusions

In this work, we have found the evidence of integrability of ∗-SDYM equations. This evidence
follows from

• the existence of infinite number of conservation laws,
• the existence of Lax pair,
• the one-to-one correspondence between solutions of ∗-SDYM equations and formal

holomorphic bundles over PT with structure group eQ.
• the existence of solution to the Riemann–Hilbert problem what gives rise to an algebraic

method of generating solutions to (ME).

In the second part of this paper some examples of reductions of ∗-SDYM to other integrable
systems, such as SU(N)-SDYM equations, SU(N) chiral equations and heavenly equations,
will be given. We also find a sequence of SU(N) chiral fields tending to the heavenly space
when N → ∞.
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